

Lane Regional Air Protection Agency Simple Air Contaminant Discharge Permit

Review Report

Peterson Pacific Corporation dba Astec Industries Eugene – Airport Road 29408 & 29414 Airport Road Eugene, OR 97402 Website: https://www.astecindustries.com/

Source Information:

Primary SIC	3531 – Construction Machinery
Secondary SIC	
Primary NAICS	333120 – Construction Machinery Manufacturing
Secondary NAICS	
Source Categories (LRAPA title 37, Table 1)	B.69: Surface Coating Operations: coating operations whose actual or expected usage of coating materials is greater than

	250 gallons per month, excluding sources that exclusively use non-VOC and non-HAP containing coatings B.78: Metal fabrication and finishing operations subject to an area source NESHAP under title 44
Public Notice Category	II

Compliance and Emissions Monitoring Requirements:

	<u> </u>	
Unassigned Emissions	N	Source Tes
Emission Credits	N	COMS
Special Conditions	N	CEMS
Compliance Schedule	N	Ambient m

Source Test [date(s)]	N
COMS	N
CEMS	N
Ambient monitoring	N

Reporting Requirements

Annual Report (due date)	February 15	
SACC (due date)	N	
GHG Report (due date)	N	
Quarterly Report (due date)	N	

Air Programs

NSPS (list subparts)	N
NESHAP (list subparts)	A, XXXXXX
CAM	N
Regional Haze (RH)	N
Synthetic Minor (SM)	N
SM-80	N
Title V	N
Part 68 Risk Management	N
ACDP (SIP)	N
Major FHAP Source	N
Federal Major Source	N
NA New Source Review (NSR)	N

Monthly Report (due dates)	N
Excess Emissions Report	Y
Other Reports (due date) - Subpart 6X Annual Report	February 15

Prevention of Significant Deterioration (PSD)	Ν
Acid Rain	Ν
Clean Air Mercury Rule (CAMR)	Ν
TACT	Ν
>20 Megawatts	Ν

Permit No. 206442

Permittee Identification

1. Peterson Pacific Corporation dba Astec Industries Eugene – Airport Road ('the facility') operates a heavy equipment manufacturing facility at 29408 and 29414 Airport Road in Eugene, Oregon.

General Background

2. The facility manufactures heavy equipment used in the logging and wood recycling industries. The significant emission units at the facility include four (4) spray booths for painting manufactured equipment, three (3) burn tables, a plasma punch, and general welding activities. The particulate matter emissions from paint overspray in the spray booths are controlled by dry filters. The particulate matter emissions from emission unit (EU) EU: BT-A – Burn Table (Messer) and EU: BT-C – Plasma Punch (Whitney) are controlled by baghouses. The particulate matter emissions from EU: BT-D – Burn Table (Kinetic 5000) and EU: BT-E – Burn Table (Kinetic 5000) are controlled by cartridge filters. EU: CNC-A – CNC Machine (C.R. Onsrud) and EU: BT-B – Burn Table (Kinetic) were permanently removed in 2022. The facility was built in 1993.

Reasons for Permit Action and Fee Basis

3. This permit action is a renewal for an existing Simple Air Contaminant Discharge Permit (Simple ACDP) which was issued on November 19, 2015 and was scheduled to expire on November 19, 2020. As the facility submitted a timely renewal application on July 13, 2020, the expired permit will remain in effect until final action has been taken on the renewal application. Because the actual emissions from calendar year 2021 were less than 10 tons/year for each criteria pollutant, the permit action is considered a Simple "low" ACDP renewal under LRAPA 37-0064(2)(a)

Attainment Status

4. The facility is located in an area that has been designated as attainment or unclassified for all criteria pollutants. The facility is located outside the Eugene-Springfield UGB as defined in LRAPA 29-0010 designating the CO and PM₁₀ maintenance areas. The facility is located inside the Eugene-Springfield UGB as described in the currently acknowledged Eugene-Springfield Metropolitan Area General Plan, as amended.

Permitting History

5. LRAPA has reviewed and issued the following permitting actions to this facility:

Date(s) Approved/Valid	Permit Action Type	Description
12/13/2001-12/12/2006	Synthetic Minor ACDP	Initial air permit
06/29/2010-06/29/2015	Simple ACDP	Renewal of air permit, including installation of EUs: BT-A and BT-C
10/27/2011	Addendum No. 1	Non NSR/PSD basic technical permit modification
11/19/2015-11/19/2020	Simple ACDP	Renewal of air permit
08/19/2022	Approval to Construct NC-200042-A22	Installation of burn tables EUs: BT-D and BT-E
08/31/2022	Approval to Construct NC-200042-B22	Installation of the fourth spray booth EU: SB-D
09/08/2022	Addendum No. 1	Simple technical permit modification
Upon Issuance	Simple ACDP	Renewal of air permit

Compliance History

6. LRAPA has initiated the following enforcement actions against this facility

6a. Notice of Non-Compliance (NON) 04-2703: On June 22, 2004, LRAPA issued a Notice of Non-Compliance (NON) No. 04-2703 to Peterson Pacific for permit violations of

Condition 3, monitoring for HAP limits, Condition 10, exceeding the plant site emission limits (PSEL), and Condition 12 and 13 regarding monitoring, recordkeeping and reporting. The PSEL exceedance was addressed in NON/NCP No. 05-2816

6b. Notice of Civil Penalty (NCP) No. 05-2816: On October 5, 2005 LRAPA issued a NCP No. 05-2816 in response to Notice of Non-Compliance (NON) No. 05-2816. A penalty in the amount of \$1,200 was imposed and paid for the violations of federal HAP synthetic minor limitations. Peterson emitted 9.86 tons of methyl ethyl ketone for the period of January 1, 2003 through December 31, 2003 against a permit limit of 9 tons.

Source Testing

7. The facility is not required to conduct source testing at this time. LRAPA is not aware of any historical source testing conducted at this facility.

Emission Unit Description

8. The emission units regulated by this permit are the following:

Emission Unit	Description	Pollution Control Device	Year Installed
SB-A	Spray Booth (East)	Spray booth filter system	1995
SB-B	Spray Booth (Open)	Spray booth filter system	1999
SB-C	Spray Booth (West)	Spray booth filter system	1999
SB-D	Spray Booth (Southwest)	Spray booth filter system	2022
BT-A	Burn Table (Messer)	Baghouse	2008
BT-C	Plasma Punch (Whitney)	Baghouse	2007
BT-D	Burn Table (Kinetic 5000)	Cartridge Filter	2022
BT-E	Burn Table (Kinetic 5000)	Cartridge Filter	2022
W	Welding Operations	Not Applicable	1993

Emission Limitations

- 9. The facility is subject to the general requirements for fugitive emissions under LRAPA 48-015. The facility must not allow visible emissions to leave the property for a period or periods totaling more than 18 seconds in a six (6) minute period. The facility must follow, but is not limited to, the list of reasonable precautions under LRAPA 48-015(1)(a)-(g). When fugitive particulate emissions escape from an air contaminant source, LRAPA may order the facility to abate the emissions. If requested by LRAPA, the facility must develop a fugitive emission control plan.
- 10. The facility is subject to the visible emission limitations under LRAPA 32-010(3). For sources, other than wood-fired boilers, no person may emit or allow to be emitted any visible emissions that equal or exceed an average of 20 percent opacity for a period or periods aggregating more than three (3) minutes in any one (1) hour.
- 11. The non-fuel burning equipment at this source that emit particulate matter are subject to the following particulate matter emission limitations under LRAPA 32-015(2):
 - 11a. For sources installed, constructed, or modified on or after June 1, 1970 but prior to April 16, 2015 for which there are no representative compliance source test results, the particulate matter emission limit is 0.14 grains per dry standard cubic foot; and
 - 11b. For sources installed, constructed, or modified after April 16, 2015, the particulate matter emission limit is 0.10 grains per dry standard cubic foot.
- 12. Each emission unit at the facility is subject to the process weight rate emission limitations under LRAPA 32-045(1). No person may cause, suffer, allow, or permit the emissions of particulate matter in any one (1) hour from any process in excess of the amount shown in LRAPA 32-8010,

for the process weight rate allocated to such process. Process weight is the total weight of all materials introduced into a piece of process equipment. Liquid and gaseous fuels and combustion air are not included in the total weight of all materials.

Typically Achievable Control Technology (TACT)

- 13. LRAPA 32-008(1) requires an existing unit at a facility to meet TACT if the emission unit meets the following criteria: The emission unit is not already subject to emission standards for the regulated pollutant under LRAPA title 30, title 32, title 33, title 38, title 39 or title 46 at the time TACT is required; the source is required to have a permit; the emission unit has emissions of criteria pollutants equal to or greater than five (5) tons per year of particulate or ten (10) tons per year of any gaseous pollutant; and LRAPA determines that air pollution control devices and emission reduction processes in use for the emissions do not represent TACT and that further emission control is necessary to address documented nuisance conditions, address an increase in emissions, ensure that the source is in compliance with other applicable requirements, or to protect public health or welfare, or the environment,
 - 13a. For the existing burn tables (EUs: BT-A and BT-B), the facility uses baghouses to control particulate matter emissions. The facility proposes no control for NO_X emissions because there is no practicable way to control this pollutant for these processes. LRAPA believes this represents TACT for these processes.
 - 13b. For the existing spray booths (EU: SB-A through SB-C), the facility uses dry filters to control particulate matter emissions. The facility proposes no control for VOC emissions because it is not economically feasible to control this pollutant from this process. The facility does use high transfer efficiency paint guns to reduce the amount of paint required in the process versus conventional spray paint guns. LRAPA believes this represents TACT for these processes.
- 14. LRAPA 32-008(2) requires new or modified emission units to meet TACT if the emission unit meets the following criteria: The emission unit is not subject to Major NSR or Type A State NSR in LRAPA title 38, and applicable NSPS in LRAPA title 46, or any other standard applicable to only new or modified sources in LRAPA title 32, title 33, or title 39 for the regulated pollutant; the source is required to have a permit; if new, the emission unit has emissions of any criteria pollutant equal to or greater than one (1) ton per year of any criteria pollutant equal to or greater than one (1) ton per year of any criteria pollutant equal to or greater than one (1) ton per year of any criteria pollutant equal to or greater than pollutant; and LRAPA determines that the proposed air pollution control devices and emission reduction processes do not represent TACT.
 - 14a. For the new burn tables (EUs: BT-D and BT-E), the facility proposes to use cartridge filters to control particulate matter emissions. The facility proposes no control for NO_X emissions because there is no practicable way to control this pollutant for these processes. LRAPA believes this proposal represents TACT for these processes.
 - 14b. For the new spray booth (EU: SB-D), the facility proposes to use dry filters to control particulate matter emissions. The facility proposes no control for VOC emissions because it is not economically feasible to control this pollutant from this process. The facility does use high transfer efficiency paint guns to reduce the amount of paint required in the process versus conventional spray paint guns. LRAPA believes this proposal represents TACT for these processes.

Plant Site Emission Limits (PSELs)

15. Provided below is a summary of the baseline emissions rate, netting basis, and PSELs for this facility.

	Baseline	Netting Basis		Plant Site Emission Limit (PSEL)		PSEL Increase	Significant
Pollutant	Emission Rate (TPY)	Previous (TPY)	ious PY) Proposed (TPY) Previous PSEL (TPY) Proposed PSEL (TPY) (TPY) (TPY) (TPY)	Emission Rate (TPY)			
PM	NA	0	0	NA	24	24	25
PM10	NA	0	0	NA	14	14	15
PM _{2.5}	NA	0	0	NA	9	9	10
CO	NA	0	0	NA	NA	NA	100
NOx	NA	0	0	NA	39	39	40
SO ₂	NA	0	0	NA	NA	NA	40
VOC	NA	0	0	39	39	39	40
GHG	NA	0	0	NA	NA	NA	75,000
Individual HAP	NA	NA	NA	9	9	NA	NA
Aggregate HAPs	NA	NA	NA	24	24	NA	NA

- 15a. The facility does not have a baseline emission rate for pollutants other than PM_{2.5} and GHGs because the facility was not in operation during either the 1977 or 1978 baseline year. A baseline emission rate is not established for PM_{2.5} in accordance with LRAPA 42-0048(3). The facility has no baseline for GHGs because the facility did not request a baseline for this pollutant.
- 15b. The netting basis for all pollutants is 0 (zero) in accordance with LRAPA 42-0046(4) and 42-0040(2)&(3).
- 15c. The PSELs for PM, PM₁₀, PM_{2.5}, NO_x and VOC are set at the generic PSEL level in accordance with LRAPA 37-0064(3)(b). No PSELs are set for CO, SO₂ and GHGs in accordance with LRAPA 42-0020(3)(a) because these pollutants are emitted below the de minimis as defined in LRAPA title 12.
- 15d. Generic PSELs were added for PM, PM₁₀, PM_{2.5}, and NO_x in Addendum 1 to the Simple ACDP issued on September 9, 2022, because the potential emissions for these pollutants from the facility were no longer de minimis. There are no changes to the VOC PSEL in the proposed Simple ACDP as compared to the previous Simple ACDP issued to this facility.
- 15e. The baseline year, netting basis, and SER are not applicable for limiting federal HAPs. There are no changes to the PSELs for HAPs in the proposed Simple ACDP as compared to the most recent Simple ACDP issued to this facility.

Federal Hazardous Air Pollutants/Toxic Air Contaminants

- 16. The facility currently has PSELs for federal HAPs that limit emissions to no more than nine (9) tons per year for an individual federal HAP and 24 tons per year for the aggregate of all federal HAPs. Therefore, the facility is considered a minor or area source of federal HAPs.
- 17. Under the Cleaner Air Oregon program, only existing sources that have been notified by LRAPA and new sources are required to perform risk assessments. This source has not been notified by LRAPA and is, therefore, not yet required to perform a risk assessment or report annual emissions of toxic air contaminants. LRAPA required reporting of approximately 600 toxic air contaminants in 2016 and regulates approximately 260 toxic air contaminants that have Risk Based Concentrations established in the rule. All federal HAPs are on the list of approximately 600 toxic air contaminants. After the source is notified by LRAPA, they must update their inventory and perform a risk assessment to see if they must reduce risk from their toxic air contaminant emissions. Until then, sources will be required to report toxic air contaminant emissions triennially.

18. Provided below is a summary of the federal HAP and CAO TAC actual emission estimates based on the potential emissions as calculated in the emission detail sheets. The highest potential emission for an individual HAP is manganese at 0.54 TPY. The potential emissions in aggregate of all federal HAPs is 0.69 TPY.

Pollutant	CAS Number	Potential Emissions (TPY)	Federal HAP	CAO Air Toxic
Organics				
Ethylbenzene	100-41-4	3.8E-02	Yes	Yes
Toluene	108-88-3	6.2E-02	Yes	Yes
Xylene	1330-20-7	5.0E-02	Yes	Yes
Acetone	67-64-1	4.82	No	Yes
n-Butyl Alcohol	71-36-3	8.1E-03	No	Yes
Methyl Ethyl Ketone	78-93-3	1.5E-02	No	Yes
iso-Propyl Alcohol	67-63-0	0.35	No	Yes
Propylene Glycol Methyl Ether	107-98-2	0.31	No	Yes
Propylene Glycol Methyl Ether Acetate	108-65-6	1.39	No	Yes
1,2,4-Trimethylbenzene	95-63-6	1.0E-03	No	Yes
Metals				
Chromium, Total	7440-47-3	5.8E-04	Yes	No
Chromium, Hexavalent	18540-29-9	0.0E+00	Yes	Yes
Cobalt	7440-48-4	4.5E-04	Yes	Yes
Copper	7440-50-8	1.2E-02	No	Yes
Manganese	7439-96-5	0.54	Yes	Yes
Nickel	7440-02-0	8.4E-04	Yes	Yes
Zinc	7440-66-6	4.9E-04	No	Yes

Toxics Release Inventory

- 19. The Toxics Release Inventory (TRI) is a federal program that tracks the management of certain toxic chemicals that may pose a threat to human health and the environment, over which LRAPA has no regulatory authority. It is a resource for learning about toxic chemical releases and pollution prevention activities reported by certain industrial facilities. Section 313 of the Emergency Planning and Community Right-to-Know Act (EPCRA) created the TRI Program. In general, chemicals covered by the TRI Program are those that cause:
 - Cancer or other chronic human health effects;
 - Significant adverse acute human health effects; or
 - Significant adverse environmental effects.

There are currently over 650 chemicals covered by the TRI Program. Facilities that manufacture, process or otherwise use these chemicals in amounts above established levels must submit annual TRI reports on each chemical. NOTE: The TRI Program is a federal program over which LRAPA has no regulatory authority. LRAPA does not guarantee the accuracy of any information copied from EPA's TRI website.

In 2020, this facility reported the release of 189.47 pounds per year of manganese (7439-96-5) to the atmosphere for stack or fugitive sources.

New Source Performance Standards (NSPSs)

20. There are no emission units at this facility for which NSPS have been promulgated or are applicable.

National Emission Standards for Hazardous Air Pollutants (NESHAPs)

- 21. LRAPA reviewed the following NESHAPs to determine their applicability to this facility:
 - 21a. 40 CFR Part 63 subpart MMMM National Emission Standards for Hazardous Air Pollutants for Surface Coating of miscellaneous Metal Parts and Products is not applicable to the facility because the facility is not a major source of HAPs.
 - 21b. 40 CFR Part 63 subpart HHHHHH National Emission Standards for Hazardous Air Pollutants: Paint Stripping and Miscellaneous Surface Coating Operations at Area Sources is not applicable to the facility because the facility does not use methylene chloride for paint stripping, it is not an autobody refinishing operation, and the surface coatings used at the facility do not contain the target HAPs.
- 22. 40 CFR Part 63 subpart XXXXX (6X) National Emission Standards for Hazardous Air Pollutants: Nine Metal Fabrication and Finishing Source Categories is applicable to this facility because the facility operations are in one of the nine source categories listed in 40 CFR 63.11514(a) and the facility has at least one of the sources listed in 40 CFR 63.11514(b). The affected sources at the facility include machining operations (i.e.: burn tables) and welding operations which use materials that contain cadmium, chromium, lead, manganese, or nickel, or any of these metals in the elemental form, with the exception of lead. The facility does have spray painting operations, but the facility claims that none of their paints contain the target HAPs listed above. LRAPA confirmed that none of the paints applied in 2021 contained the target HAPs

23.	The 40 CFR 63 subpart 6X requirements that are applicable to machining operations and welding
	operations at the facility are identified in the following table:

40 CFR 63 subpart XXXXXX Citation	Description	Applicable to Source (Yes/No)	Comments	Permit Condition
63.11514	Applicability	Yes	Requirement added to document non-applicability to spray booths.	17
63.11515	Compliance dates	Yes	None.	NA
63.11516	Standards and management practices	Yes	None.	18
63.11517	Monitoring requirements	Yes	None.	19
63.11518	Reserved	No	None.	NA
63.11519	Notification, recordkeeping, and reporting requirements	Yes	LRAPA has approved a February 15 submittal date rather than January 31 under 40 CFR 63.11519(b)(2)(iii)	20
63.11520	Reserved	No	None.	NA
63.11521	Who implements and enforces?	Yes	None.	NA
63.11522	Definitions	Yes	None.	NA
63.11523	General provisions	Yes	None.	21

Recordkeeping Requirements 24. The facility is required

- 24. The facility is required to keep and maintain a record of the following information for a period of at least five (5) years.
 - 24a. VOC/HAP-containing materials include, but are not limited to, coatings, lacquers, thinners, stains, topcoats, solvents, adhesives, cleaning, and wash-off materials.
 - 24b. The density and VOC/HAP content information must be supplied from CPDS or SDS provided by the manufacturer/supplier of the VOC/HAP containing material.

Activity	Parameter	Units	Minimum Recording Frequency
PSEL-Related Recordkeeping			
Spray booth coating and solvent SDS	Each coating and solvent	NA	Maintain documentation
VOC/HAP-containing material Usage	Material name and usage	Gallons	Monthly
VOC/HAP-containing material Usage	Density of material	Pounds per gallon	Each coating and solvent
VOC- containing material usage	VOC content	% by weight	Each coating and solvent
HAP- containing material usage	Individual HAP content	% by weight	Each coating and solvent
Welding rod/wire usage	Rod/wire type and usage	Pounds	Monthly
Spray booth filter particulate matter control efficiency	Control efficiency	%	Maintain documentation from each filter manufacturer
Spray booth filter replacement	Occurrence	NA	Upon Replacement
Spray booth training	Training logs / certifications	NA	Maintain documentation of training
Burn table operation	Hours of operation by unit	Hours	Monthly
40 CFR 63 Subpart 6X Recordkeeping		•	
Applicability determinations for equipment potentially subject to 40 CFR 63 subpart 6X	NA	NA	Maintain documentation
Visual determinations of fugitive emissions records, as applicable.	Opacity results	NA	Daily, weekly, monthly or quarterly
Visual determinations of emissions opacity records, as applicable.	Opacity results	NA	Daily, weekly, monthly or quarterly
Records of the manufacturer's specifications for control devices, as applicable.	NA	NA	Maintain documentation
Site-Specific Welding Emissions Management Plan, as applicable.	NA	NA	Maintain documentation

Activity	Parameter	Units	Minimum Recording Frequency
Manufacturer's instructions for equipment subject to 40 CFR 63 subpart 6X	NA	NA	Maintain documentation
Welding rod usage containing MFHAPs, as applicable.	Rod/wire type and usage	Pounds	12-month rolling
General Recordkeeping			
Complaints from the public	Log each complaint and the resolution	NA	Upon receipt
Upset log of all planned and unplanned excess emissions	See Condition G15	NA	Per occurrence

Reporting Requirements

25. The facility must submit to LRAPA the following reports by no later than the dates indicated in the table below:

Report	Reporting Period	Due Date
PSEL pollutant emissions as calculated according to Conditions 5 through 8 of the permit, including the supporting process parameter and emission factor information. The annual report must include the annual usage of welding rod/wire.	Annual	February 15
Annual Certification and Compliance Report for 40 CFR 63 subpart 6X.	Annual	February 15
A summary of maintenance and repairs performed on any pollution control devices at the facility.	Annual	February 15
A summary of complaints from the public and the resolution, as applicable.	Annual	February 15
The upset log information required by Condition G13 of the permit, if required by Condition G13.	Annual	February 15

26. The permittee is not subject to greenhouse gas reporting under OAR 340 Division 215 because actual greenhouse gas emissions are less than 2,500 metric tons (2,756 short tons) of CO₂ equivalents per year. If the source ever emits more than this amount, they will be required to report greenhouse gas emissions.

Public Notice

27. The draft permit was on public notice from October 18, 2022 to November 17, 2022. Pursuant to LRAPA 37-0064(4), issuance of a renewed Simple ACDP requires public notice as a Category II permit action in accordance with LRAPA 31-0030(3)(b), which requires LRAPA to provide notice of the proposed permit action and a minimum of 30 days for interested persons to submit written comments.

No comments were submitted during the 30-day comment period.

JJW/rr 11/18/2022

Peterson Pacific - 206442							
Emission Deta	ail Sheets						
Facility Poter	ntial Emissions	Summary					
_							
Criteria Pollu	tant Emissions	5					
PM (TPY)	PM10 (TPY)	PM2.5 (TPY)	SO ₂ (TPY)	NOx (TPY)	CO (TPY)	VOC (TPY)*	GHGs (TPY)
4	4	4	0	6	0	14	0
FHAP/TAC En	nissions						
				Potential			
			CAS	Emissions	Federal	CAO	
Pollutant			Number	(TPY)	HAP	Air Toxic	
Organics							
Ethylbenzene			100-41-4	3.8E-02	Yes	Yes	
Toluene			108-88-3	6.2E-02	Yes	Yes	
Xylene			1330-20-7	5.0E-02	Yes	Yes	
Acetone			67-64-1	4.82	No	Yes	
n-Butyl Alcoho			71-36-3	8.1E-03	No	Yes	
Methyl Ethyl K	letone		78-93-3	1.5E-02	No	Yes	
iso-Propyl Alco	ohol		67-63-0	0.35	No	Yes	
Propylene Gly	col Methyl Ethe	r	107-98-2	0.31	No	Yes	
Propylene Gly	col Methyl Ethe	r Acetate	108-65-6	1.39	No	Yes	
1,2,4-Trimethy	lbenzene		95-63-6	1.0E-03	No	Yes	
Metals							
Chromium, Tot	al		7440-47-3	5.8E-04	Yes	No	
Chromium, He	xavalent		18540-29-9	0.0E+00	Yes	Yes	
Cobalt			7440-48-4	4.5E-04	Yes	Yes	
Copper			7440-50-8	1.2E-02	No	Yes	
Lead			7439-92-1	0.0E+00	Yes	Yes	
Manganese			7439-96-5	0.54	Yes	Yes	
Nickel			7440-02-0	8.4E-04	Yes	Yes	
Zinc			7440-66-6	4.9E-04	No	Yes	
		Total Emis	sions (TPY) =	7.6	0.69	7.6	
		Μ	ax Individual	FHAP (TPY) =	0.54		
Note:							
Elemental lead	l is not a federa	I HAP.					

Review Report Permit Number: 206442 Page 10 of 14

Review Report Permit Number: 206442 Page 11 of 14

Peterson Pacific - 20	6442											
Emission Detail Shee	ets											
Particulate Matter Er	nissions from Paint Booth Overspray											
65%	= Minimum Coating Transfer Efficiency											
98.81%	= Minimum Filter PM Removal Efficiency											
2.0	= Safety Factor											
Manufacturer	Product Type	Product Code	Gallons Used	Coating (Ib/gal)	Pounds Used	VOC (lb/gal)	VOC (% wt.)	Solids (Ib/gal)	Solids (% wt)	Solids Usage (Ibs/yr)	2021 PM Emissions (Ibs)	Potential PM Emissions (Ibs)
Axalta	Activator for Imron 2.8 PR	FG-062	148.75	9.04	1,345	2.267		6.773		1,007	4.20	8.39
Axalta	Imron 3.5HG Plus Peterson Pacific Blue	33-952926	408.8	8.84	3,614		45.39%		54.61%	1,973	8.22	16.44
Axalta	Imron Accelerator	VG-805	26.75	8.18	219	8.021		0.159		4	1.8E-02	0.04
Axalta	Retarder	Y32401	354	7.851	2,779	7.851		0		0	0.0E+00	0.00
Axalta	Imron Accelerator	189S	45.75	8.13	372	8.116		0.014		1	2.7E-03	0.01
Axalta	Metalok Pre-Treatment	235S	327	10.49	3,430	1.281		9.209		3,011	12.54	25.08
Axalta	Metalok Activator	236S	171	7.27	1,243	5.235		2.035		348	1.45	2.90
Axalta	Imron 3.5 HG + High Gloss Polyurethane - White	33-24861	119	10.96	1,304	3.63		7.33	L	872	3.63	7.27
Axalta	Imron 3.5 HG + High Gloss Polyurethane - Black	33-24926	139	8.33	1,158	3.894		4.436		617	2.57	5.14
Axalta	Polyurethane Primer - ANSI 61 Gray	62-1072	710	10.83	7,689	2.176			63.86%	4,910	20.45	40.90
Axalta	Imron Activator	9T00-A	482.25	9.74	4,697	0.008		9.732		4,693	19.55	39.09
Axalta	Reducer GL	441-60	259	6.61	1,712	0			0.00%	0	0.0E+00	0.00
Axalta	Imron 3.5 HG+ Polyurethane High Gloss Mix	RH	1293	9.6	12,413	3.32		6.28		8,120	33.82	67.64
Axalta	Activator for Corlar R 2.8 HG	VG-026	13	7.78	101	2.526			62.79%	64	0.26	0.53
								Tot	al PM Emiss	ions (TPY) =	0.05	0.11
			Oregon	Toxic Air								
HAP/TAC Emissions			Contar	ninants								
			Zinc Ph	osphate								
			(7779	-90-0)								
Manufacturer	Product Type	Product Code	% wt.	lbs/yr								
Axalta	Activator for Imron 2.8 PR	FG-062		0.00								
Axalta	Imron 3.5HG Plus Peterson Pacific Blue	33-952926		0.00								
Axalta	Imron Accelerator	VG-805		0.00								
Axalta	Retarder	Y32401		0.00								
Axalta	Imron Accelerator	189S		0.00								
Axalta	Metalok Pre-Treatment	235S		0.00								
Axalta	Metalok Activator	236S		0.00								
Axalta	Imron 3.5 HG + High Gloss Polyurethane - White	33-24861		0.00								
Axalta	Imron 3.5 HG + High Gloss Polyurethane - Black	33-24926		0.00	1							
Axalta	Polyurethane Primer - ANSI 61 Gray	62-1072	3.00%	1.92	-							
Axalta	Imron Activator	9T00-A	ļ	0.00								
Axalta	Reducer GL	441-60	ļ	0.00								
Axalta	Imron 3.5 HG+ Polyurethane High Gloss Mix	RH		0.00	Į							
Axalta	Activator for Corlar R 2.8 HG	VG-026		0.00	4							
			TPY =	4.9E-04								
Note:												
Potential emissions ar	e based on scaling 2021 actual usage by a safety fact	or.	[
Products using calcula	ated solids pounds per gallon are conservatively estimated	ating overspray emiss	sions.									
Zinc phophate represe	nted as zinc.											

Review Report Permit Number: 206442 Page 12 of 14

Peterson Paci	ific - 206442																							
Emission Deta	ail Sheets																							
VOC and HAP	/TAC Emissions from Paint Booths																							
2.0	= Safety Factor																							
VOC Emission	15																							
								2021 VOC																
			Gallons	Coating	Pounds	VOC	voc	Emissions	VOC PTE															
Manufacturer	Product Type	Product Code	Used	(lb/gal)	Used	(lb/gal)	(% wt.)	(lbs)	(lbs)															
Axalta	Activator for Imron 2.8 PR	FG-062	148.75	9.04	1,345	2.267		337	674															
Axalta	Imron 3.5HG Plus Peterson Pacific Blue	RH-952926	408.8	8.84	3,614		45.39%	1,640	3,281															
Axalta	Imron Accelerator	VG-805	26.75	8.18	219	8.021		215	429	<u> </u>														
Axalta	Retarder	Y32401	354	7.851	2,779	7.851		2,779	5,559	<u> </u>														
Axalta	Imron Accelerator	189S	45.75	8.13	372	8.116		371	743															
Axalta	Metalok Pre-Treatment	235S	327	10.49	3,430	1.281		419	838															
Axalta	Metalok Activator	236S	171	7.27	1,243	5.235		895	1,790	<u> </u>														
Axalta	Imron 3.5 HG + High Gloss Polyurethane - White	33-24861	119	10.96	1,304	3.630		432	864	<u> </u>														
Axalta	Imron 3.5 HG + High Gloss Polyurethane - Black	33-24926	139	8.33	1,158	3.894		541	1,083															
Axalta	Polyurethane Primer - ANSI 61 Gray	62-1072	710	10.83	7,689	2.176		1,545	3,090	<u> </u>														
Axalta	Imron Activator	9T00-A	482.25	9.74	4,697	0.008		4	8	<u> </u>														
Axalta	Reducer GL	441-60	259	6.61	1,712	0.000		0	0															
Axalta	Imron 3.5 HG+ Polyurethane High Gloss Mix	RH	1,293	9.60	12,413	3.32		4,293	8,586															
Axalta	Activator for Corlar R 2.8 HG	VG-026	13	7.78	101	2.526		33	66	<u> </u>														
		Total =	4,497	ļ	Total VO	C Emissio	ns (TPY) =	6.75	13.50	ļ														
											A		A	anta										
									_		Oregon	I OXIC AIF	Contamina	ants	· · · · · ·									
HAP/TAC Emi	ssions			Fede	ral Hazar	dous Air P	ollutants				Oregon	I OXIC AIF	Contamina	ants										
HAP/TAC Emi	ssions			Fede	ral Hazaro	dous Air P	ollutants			<u> </u>	Oregon		Contamina	ants					Propyler	ie Glycol				
HAP/TAC Emi	ssions			Fede	ral Hazar	dous Air P	ollutants			<u> </u>	Oregon		Methy	l Ethyl			Propyler	ne Glycol	Propyler Methy	ne Glycol I Ether	1,2	,4-	Hexame	ethylene
HAP/TAC Emi	ssions		Ethylb	Fede enzene	ral Hazaro Tol	dous Air P uene	ollutants X	ylene	Acet	one	n-Butyl	Alcohol	Methy	I Ethyl one	iso-Propy	I Alcohol	Propyler Methy	ne Glycol /I Ether	Propyler Methy Ace	ne Glycol I Ether tate	1,2 Trimethyl	,4- Ibenzene	Hexame	ethylene yanate
HAP/TAC Emi	ssions		Ethylb (100	Fede enzene -41-4)	Tol	dous Air P uene -88-3)	ollutants X (13	ylene 30-20-7)	Acet (67-6	one 4-1)	n-Butyl	Alcohol	Methy Keto (78-5	I Ethyl one 93-3)	iso-Propy (67-6	l Alcohol 33-0)	Propyler Methy (107	ne Glycol /I Ether -98-2)	Propyler Methy Ace (108-	ne Glycol I Ether tate -65-6)	1,2 Trimethyl (95-6	,4- Ibenzene 33-6)	Hexame diisoc (2818	ethylene yanate 2-81-2)
HAP/TAC Emin	ssions Product Type	Product Code	Ethylb (100 % wt.	Fede enzene -41-4) Ibs/yr	Tol (108 % wt.	uene 88-3) Ibs/yr	X (13 % wt.	ylene 30-20-7) Ibs/yr	Acet (67-6 % wt.	one 64-1) Ibs/yr	n-Butyl (71-) % wt.	Alcohol 36-3)	Methy Keta (78-5 % wt.	I Ethyl one 93-3) Ibs/yr	iso-Propy (67-6 % wt.	'l Alcohol 53-0) Ibs/yr	Propyler Methy (107 % wt.	ne Glycol /I Ether -98-2) Ibs/yr	Propyler Methy Ace (108- % wt.	ne Glycol I Ether rtate r65-6) Ibs/yr	1,2 Trimethyl (95-6 % wt.	,4- benzene 3-6) bs/yr	Hexame diisoc (2818) % wt.	ethylene yanate 2-81-2) Ibs/yr
HAP/TAC Emi Manufacturer Axalta	ssions Product Type Activator for Imron 2.8 PR	Product Code FG-062	Ethylb (100 % wt.	Fede enzene -41-4) Ibs/yr 0	Tol (108 % wt.	uene 88-3) Ibs/yr 0	ollutants X (13 % wt. 0.00%	ylene 30-20-7) Ibs/yr 0	Acet (67-6 % wt.	one i4-1) lbs/yr 0	n-Butyl (71- % wt.	Alcohol 36-3) 0	Methy Keta (78-5 % wt.	I Ethyl one 93-3) Ibs/yr 0	iso-Propy (67-6 % wt. 0.00%	rl Alcohol 63-0) Ibs/yr 0	Propyler Methy (107 % wt.	ne Glycol /I Ether -98-2) Ibs/yr 0	Propyler Methy Ace (108- % wt. 10.00%	ne Glycol 1 Ether •tate •65-6) Ibs/yr 269	1,2 Trimethyi (95-€ % wt.	,4- Ibenzene 63-6) Ibs/yr 0	Hexame diisoc (2818) % wt. 75.00%	ethylene yanate 2-81-2) Ibs/yr 2,017
HAP/TAC Emis Manufacturer Axalta Axalta	Product Type Activator for Imron 2.8 PR Imron 3.5HG Plus Peterson Pacific Blue	Product Code FG-062 33-952926	Ethylb (100 % wt.	Fede enzene -41-4) Ibs/yr 0 0	Tol (108 % wt.	uene -88-3) Ibs/yr 0 0	X (13 % wt. 0.00%	ylene 30-20-7) Ibs/yr 0 0	Acet (67-6 % wt.	one i4-1) 0 0	n-Butyl (71- % wt.	Alcohol 36-3) 0 0	Methy Ket (78-5 % wt.	I Ethyl one 93-3) Ibs/yr 0 0	iso-Propy (67-6 % wt. 0.00% 1.20%	I Alcohol 53-0) Ibs/yr 0 87	Propyler Methy (107 % wt.	ne Glycol /l Ether -98-2) lbs/yr 0 0	Propyler Methy Ace (108- % wt. 10.00%	ne Glycol I Ether tate -65-6) Ibs/yr 269 0	1,2 Trimethyi (95-6 % wt.	,4- benzene 3-6) bs/yr 0 0	Hexame diisoc (2818: % wt. 75.00%	ethylene yanate 2-81-2) Ibs/yr 2,017 0
HAP/TAC Emis Manufacturer Axalta Axalta Axalta	Activator for Imron 2.8 PR Imron 3.5HG Plus Peterson Pacific Blue Imron Accelerator	Product Code FG-062 33-952926 VG-805	Ethylb (100 % wt.	Fede enzene -41-4) Ibs/yr 0 0 0 0 0	Tol (108 % wt.	uene -88-3) Ibs/yr 0 0	X (13 % wt. 0.00%	ylene 30-20-7) Ibs/yr 0 0	Acet (67-6 % wt.	one i4-1) 1bs/yr 0 0	n-Butyl (71- % wt.	Alcohol 36-3) 1bs/yr 0 0	Methy Ket (78-5 % wt.	I Ethyl one 93-3) Ibs/yr 0 0 0	iso-Propy (67-6 % wt. 0.00% 1.20%	I Alcohol 53-0) Ibs/yr 0 87 0	Propylei Methy (107 % wt.	ne Glycol I Ether -98-2) Ibs/yr 0 0 0	Propyler Methy Ace (108- % wt. 10.00%	ne Glycol 1 Ether tate -65-6) Ibs/yr 269 0 0	1,2 Trimethy (95-6 % wt.	,4- Ibenzene 33-6) Ibs/yr 0 0 0	Hexame diisoc (2818: % wt. 75.00%	ethylene yanate 2-81-2) Ibs/yr 2,017 0 0
HAP/TAC Emis Manufacturer Axalta Axalta Axalta Axalta	ssions Product Type Activator for Imron 2.8 PR Imron 3.5HG Plus Peterson Pacific Blue Imron Accelerator Retarder	Product Code FG-062 33-952926 VG-805 Y32401	Ethylb (100 % wt.	Fede enzene -41-4) Ibs/yr 0 0 0 0 56	Tol (108 % wt.	uene -88-3) Ibs/yr 0 0 0 0	X (13 % wt. 0.00% 1.80%	ylene 30-20-7) 1bs/yr 0 0 0 100	Acet (67-6 % wt.	one i4-1) 0 0 0 0	n-Butyl (71- % wt.	Alcohol 36-3) Ibs/yr 0 0 0	Methy Ket (78-5 % wt.	I Ethyl one 93-3) Ibs/yr 0 0 0	iso-Propy (67-6 % wt. 0.00% 1.20%	I Alcohol 33-0) Ibs/yr 0 87 0 0	Propylei Methy (107 % wt.	ne Glycol I Ether -98-2) Ibs/yr 0 0 0 0	Propyler Methy Ace (108- % wt. 10.00%	ne Glycol 1 Ether 1 tate -65-6) 1 bs/yr 269 0 0 0 0	1,2 Trimethy (95-6 % wt.	,4- benzene 33-6) Ibs/yr 0 0 0 0 0	Hexame diisoc (2818: % wt. 75.00%	ethylene yanate 2-81-2) Ibs/yr 2,017 0 0 0
HAP/TAC Emis Manufacturer Axalta Axalta Axalta Axalta Axalta	Sector Stress St	Product Code FG-062 33-952926 VG-805 Y32401 189S	Ethylb. (100 % wt. 1.00%	Fede enzene -41-4) Ibs/yr 0 0 0 56 0	Tol (108 % wt.	uene -88-3) Ibs/yr 0 0 0 0 0	X (13 % wt. 0.00% 1.80%	ylene 30-20-7) 0 0 0 100 0	Acet (67-6 % wt.	one 14-1) 0 0 0 0 0	n-Butyl (71- % wt.	Alcohol 36-3) 1bs/yr 0 0 0 0	Methy Keta (78-5 % wt.	1 Ethyl one 93-3) 1bs/yr 0 0 0 0 0	iso-Propy (67-6 % wt. 0.00% 1.20%	I Alcohol 33-0) Ibs/yr 0 87 0 0 0	Propyler Methy (107 % wt.	ne Glycol / Ether -98-2) 0 0 0 0 0	Propyler Methy Ace (108- % wt. 10.00%	ne Glycol 1 Ether tate -65-6) 269 0 0 0 0	1,2 Trimethy (95- % wt.	,4- (benzene (33-6) Ibs/yr 0 0 0 0 0	Hexame diisoc (2818: % wt. 75.00%	ethylene yanate 2-81-2) 1bs/yr 2,017 0 0 0 0
HAP/TAC Emis Manufacturer Axalta Axalta Axalta Axalta Axalta Axalta Axalta	Sector Stress St	Product Code FG-062 33-952926 VG-805 Y32401 189S 235S	Ethylb (100 % wt. 1.00%	Fede enzene -41-4) Ibs/yr 0 0 0 56 0 21	Tol (108 % wt.	dous Air P -88-3) Ibs/yr 0 0 0 0 0 0	X (13 % wt. 0.00% 1.80%	ylene 30-20-7) 0 0 0 0 100 0 0	Acet (67-6 % wt. 32.00%	one i4-1) 0 0 0 0 0 0 2,195	n-Butyl (71-: % wt.	Alcohol 36-3) Ibs/yr 0 0 0 0 0	Methy Ket (78-5 % wt.	I Ethyl one 33-3) Ibs/yr 0 0 0 0 0	iso-Propy (67-6 % wt. 0.00% 1.20%	1 Alcohol 53-0) 1bs/yr 0 87 0 0 0 0	Propylei Methy (107 % wt.	ne Glycol I Ether -98-2) Ibs/yr 0 0 0 0 0 0	Propyler Methy Ace (108- % wt. 10.00% 3.00%	ne Glycol 1 Ether tate -65-6) 1bs/yr 269 0 0 0 0 0 206	1,2 Trimethy (95-6 % wt.	,4- benzene i3-6) Ibs/yr 0 0 0 0 0 0	Hexama diisoc (2818: % wt. 75.00%	ethylene yanate 2-81-2) Ibs/yr 2,017 0 0 0 0 0
HAP/TAC Emis Manufacturer Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta	Sector Stress St	Product Code FG-062 33-952926 VG-805 Y32401 189S 235S 236S	Ethylb (100 % wt. 1.00% 0.30%	Fede enzene -41-4) Ibs/yr 0 0 0 56 0 21 0	ral Hazar Tol (108 % wt.	ue ne -88-3) Ibs/yr 0 0 0 0 0 0 0 0 0 0 0 0	ollutants X (13 % wt. 0.00% 1.80%	ylene 30-20-7) 0 0 0 0 100 0 0 0 0	Acet (67-6 % wt. 32.00%	one i4-1) 0 0 0 0 0 0 0 2,195 0	n-Butyl (71- % wt.	Alcohol 36-3) 1bs/yr 0 0 0 0 0 0 0 0	Methy Ket (78-5 % wt.	I Ethyl one 33-3) Ibs/yr 0 0 0 0 0 0 0 0 0	iso-Propy (67-6 % wt. 0.00% 1.20% 25.00%	I Alcohol 33-0) Ibs/yr 0 87 0 0 0 0 0 0 0 0	Propyle Methy (107 % wt.	ne Glycol (1 Ether -98-2) 1 Ibs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Propyler Methy Ace (108- % wt. 10.00%	ne Glycol 1 Ether tate -65-6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1,2 Trimethy (95-€ % wt.	,4- benzene i3-6) 0 0 0 0 0 0 0 0	Hexame diisoc (2818) % wt. 75.00%	ethylene yanate 2-81-2) Ibs/yr 2,017 0 0 0 0 0 0 0 0
HAP/TAC Emis Manufacturer Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta	Product Type Activator for Imron 2.8 PR Imron 3.5HG Plus Peterson Pacific Blue Imron Accelerator Retarder Imron Accelerator Metalok Pre-Treatment Metalok Activator Imron 3.5 HG + High Gloss Polyurethane - White	Product Code FG-062 33-952926 VG-805 Y32401 189S 235S 235S 236S 33-24861	Ethylb (100 % wt. 1.00% 0.30%	Fede enzene -41-4) Ibs/yr 0 0 0 56 0 21 0 0 0	Tol (108 % wt.	uene -88-3) Ibs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ollutants X (13 % wt. 0.00% 1.80%	ylene 30-20-7) 0 0 0 100 0 0 0 0 0 0 0	Acet (67-6 % wt. 32.00%	one 4-1) 1bs/yr 0 0 0 0 0 0 2,195 0 0 0	n-Butyl (71- % wt.	Alcohol 36-3) 1bs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Methy Ket (78-5 % wt.	I Ethyl one 33-3) Ibs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	iso-Propy (67-f % wt. 0.00% 1.20% 25.00%	I Alcohol 33-0) Ibs/yr 0 87 0 0 0 0 0 0 0 0 0 0 0 0 0	Propyle Methy (107 % wt.	ne Glycol (1 Ether -98-2) Ibs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Propyler Methy Ace (108- % wt. 10.00%	ne Glycol 1 Ether tate -65-6) 1 bs/yr 269 0 0 0 0 0 206 0 0 0 0 0 0 0 0 0 0 0 0 0	1,2 Trimethy (95-€ % wt.	,4- benzene i3-6) 0 0 0 0 0 0 0 0 0 0 0 0	Hexame diisoc (2818: % wt. 75.00%	athylene yanate 2-81-2) lbs/yr 2,017 0 0 0 0 0 0 0 0 0 0 0 0 0
HAP/TAC Emis Manufacturer Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta	Product Type Activator for Imron 2.8 PR Imron 3.5HG Plus Peterson Pacific Blue Imron Accelerator Retarder Imron Accelerator Metalok Pre-Treatment Metalok Activator Imron 3.5 HG + High Gloss Polyurethane - White Imron 3.5 HG + High Gloss Polyurethane - Black	Product Code FG-062 33-952926 VG-805 Y32401 189S 235S 236S 33-24861 33-24926	Ethylb. (100 % wt. 1.00%	Fede enzene -41-4) Ibs/yr 0 0 0 56 0 21 0 0 0	ral Hazarr Tol (108 % wt.	Lene 	X (13 % wt. 0.00% 1.80%	ylene 30-20-7) 0 0 0 100 0 0 0 0 0 0 0 0	Acet (67-6 % wt. 32.00%	one 4-1) 0 0 0 0 0 0 2,195 0 0 0 0 0	n-Butyl (71- % wt.	Alcohol 36-3) Ibs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Methy Ket (78-5 % wt.	I Ethyl one 93-3) Ibs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	iso-Propy (67-6 % wt. 0.00% 1.20% 25.00%	I Alcohol 33-0) Ibs/yr 0 87 0 0 0 0 0 622 0 0 0	Propylei Methy (107 % wt. 25.00%	ne Glycol / Ether -98-2) Ibs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Propyler Methy Ace (108 % wt. 10.00%	ne Glycol 1 Ether estate -65-6) 0 0 0 0 0 206 0 0 0 0 0 0 0 0 0 0 0 0 0	1,2 Trimethy (95-6 % wt.	,4- benzene i3-6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Hexame diisocy (2818: % wt. 75.00%	ethylene yanate 2-81-2) Ibs/yr 2,017 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
HAP/TAC Emis Manufacturen Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta	Product Type Activator for Imron 2.8 PR Imron 3.5HG Plus Peterson Pacific Blue Imron Accelerator Retarder Imron Accelerator Metalok Pre-Treatment Metalok Activator Imron 3.5 HG + High Gloss Polyurethane - White Imron 3.5 HG + High Gloss Polyurethane - Black Polyurethane Primer - ANSI 61 Gray	Product Code FG-062 33-952926 VG-805 Y32401 189S 235S 236S 33-24861 33-24926 62-1072	Ethylb (100 % wt. 1.00%	Fede enzene 41-4) Ibs/yr 0	Tol (108 % wt. 	uene 	X (13 % wt. 0.00% 1.80% 1.80%	ylene 30-20-7) 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0	Acet (67-6 % wt. 32.00%	one 4-1) 1bs/yr 0 0 0 0 0 2,195 0 0 0 0 0 0 0 0 0 0 0 3,998	n-Butyl (71- % wt.	Alcohol 36-3) Ibs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Methy Keti (78-5 % wt.	I Ethyl one 33-3) Ibs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	iso-Propy (67-6 % wt. 0.00% 1.20% 25.00%	1 Alcohol 33-0) 1bs/yr 0 87 0 0 0 0 622 0 0 0 0 0 0 0 0	Propylei Methy (107 % wt. 25.00%	ne Glycol / Ether -98-2) Ibs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Propyler Methy Ace (108 % wt. 10.00%	ne Glycol 1 Ether •65-6) 1 bs/yr 269 0 0 0 0 206 0 0 0 0 0 0 0 0 0 2,307	1,2 Trimethy (95-4 % wt.	,4- benzene 33-6) 1bs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Hexame diisoc; (2818: % wt. 75.00%	ethylene yanate 2-81-2) Ibs/yr 2,017 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
HAP/TAC Emis Manufacturer Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta	Product Type Activator for Imron 2.8 PR Imron 3.5HG Plus Peterson Pacific Blue Imron Accelerator Retarder Imron Accelerator Metalok Pre-Treatment Metalok Activator Imron 3.5 HG + High Gloss Polyurethane - White Imron 3.5 HG + High Gloss Polyurethane - Black Polyurethane Primer - ANSI 61 Gray Imron Activator	Product Code FG-062 33-952926 VG-805 Y32401 189S 235S 236S 33-24861 33-24926 62-1072 9T00-A	Ethylb (100 % wt. 1.00% 0.30%	Fode enzene -41-4) lbs/yr 0	Tol (108 % wt.	uene -88-3) Ibs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Oliutants X (13 % wt. 0.00% 1.80%	ylene 30-20-7) 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0	Acet (67-6 % wt. 32.00%	one 4-1) 1bs/yr 0 0 0 0 0 0 2,195 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	n-Butyl (71- % wt.	Alcohol 36-3) 1bs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Methy Ket (78-5 % wt.	I Ethyl one 33-3) Ibs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	iso-Propy (67-6 % wt. 0.00% 1.20% 25.00%	1 Alcohol 33-0) 1bs/yr 0 87 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Propyle Methy (107 % wt. 25.00%	ne Glycol /l Ether -98-2) 0 0 0 0 0 0 0 622 0 0 0 0 0 0 0 0 0 0 0	Propyler Methy Ace (108- % wt. 10.00%	ne Glycol 1 Ether +state -65-6) 0 0 0 0 0 206 0 0 0 206 0 0 0 2,307 0	1,2 Trimethy (95-(% wt.	,4- benzene i3-6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Hexame diisoc; (2818: % wt. 75.00%	ethylene yanate 2-81-2) 1bs/yr 2,017 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
HAP/TAC Emis Manufacturer Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta	Product Type Activator for Imron 2.8 PR Imron 3.5HG Plus Peterson Pacific Blue Imron Accelerator Retarder Imron Accelerator Metalok Pre-Treatment Metalok Activator Imron 3.5 HG + High Gloss Polyurethane - White Imron 3.5 HG + High Gloss Polyurethane - Black Polyurethane Primer - ANSI 61 Gray Imron Activator Reducer GL	Product Code FG-062 33-952926 VG-805 Y32401 189S 235S 236S 33-24861 33-24861 33-24861 33-24861 9T00-A 441-60	Ethylb (100 % wt. 1.00% 0.30%	Fede enzene -41-4) Ibs/yr 0 0 0 56 0 21 0 0 0 0 0 0 0 0 0 0 0 0 0	Tol (108 % wt. 	Lene -88-3) 1bs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	oliutants X (13 % wt. 0.00% 1.80%	ylene 30-20-7) 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0	Acet (67-6 % wt. 32.00% 26.00% 100.00%	one 4-1) 1bs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0	n-Butyl (71- % wt.	Alcohol 36-3) Ibs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Methy Ket (78-5 % wt.	I Ethyl one 33-3) Ibs/yr 0	iso-Propy (67-6 % wt. 0.00% 1.20% 25.00%	1 Alcohol 33-0) 1bs/yr 0 87 0 0 0 0 0 622 0 0 0 0 0 0 0 0 0 0 0 0 0	Propyle Methy (107 % wt. 25.00%	ne Glycol 1 Ether -98-2) 1 bs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0	Propyler Methy Ace (108- % wt. 10.00%	ne Glycol 1 Ether etate -65-6) 1 bs/yr 269 0 0 0 206 0 0 206 0 0 0 206 0 0 0 0 0 0 0 0 0 0 0 0 0	1,2 Trimethy (95-1 % wt.	,4- benzene 33-6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Hexame diisocy (2818: % wt. 75.00%	ethylene yanate 2-81-2) 1bs/yr 2,017 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
HAP/TAC Emis Manufacturer Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta	Product Type Activator for Imron 2.8 PR Imron 3.5HG Plus Peterson Pacific Blue Imron Accelerator Retarder Imron Accelerator Metalok Pre-Treatment Metalok Activator Imron 3.5 HG + High Gloss Polyurethane - White Imron 3.5 HG + High Gloss Polyurethane - Black Polyurethane Primer - ANSI 61 Gray Imron Activator Reducer GL Imron 3.5 HG + Polyurethane High Gloss Mix	Product Code FG-062 33-952926 VG-805 Y32401 189S 235S 236S 33-24861 33-24926 62-1072 9T00-A 441-60 RH	Ethylb (100 % wt. 1.00% 0.30%	Fede -41-4) Ibs/yr 0 0 0 0 56 0 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ral Hazare Tol (108 % wt.	ene -88-3) Ibs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0	oliutants X (13 % wt. 0.00% 1.80%	ylene 30-20-7) 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0	Acet (67-6 % wt. 32.00% 26.00% 100.00%	one 4-1) 1bs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0	n-Butyl (71- % wt.	Alcohol 36-3) 1bs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Methy Ket (78-5 % wt.	I Ethyl one 33-3) Ibs/yr 0	iso-Propy (67-6 % wt. 0.00% 1.20% 25.00%	1 Alcohol 33-0) 1bs/yr 0 87 0 0 0 0 0 0 0 0 0 0 0 0 0	Propyle Methy (107 % wt. 25.00%	ne Glycol 1 Ether -98-2) 1 Ibs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0	Propyler Methy Ace (108- % wt. 10.00%	ne Glycol 1 Ether etate -65-6) 1 bs/yr 269 0 0 0 0 206 0 0 0 206 0 0 0 0 0 0 0 0 0 0 0 0 0	1,2 Trimethy (95-1 % wt.	,4- benzene i3-6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Hexame diisocy (2818: % wt. 75.00%	ethylene yanate 2-81-2) Ibs/yr 2,017 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
HAP/TAC Emis Manufacturer Axalta	Product Type Activator for Imron 2.8 PR Imron 3.5HG Plus Peterson Pacific Blue Imron Accelerator Retarder Imron 3.5 HG + High Gloss Polyurethane - White Imron 3.5 HG + High Gloss Polyurethane - White Imron 3.5 HG + High Gloss Polyurethane - Black Polyurethane Primer - ANSI 61 Gray Imron 3.5 HG + Polyurethane High Gloss Mix Activator for Corlar R 2.8 HG	Product Code FG-062 33-952926 VG-805 Y32401 189S 235S 236S 33-24861 33-24926 62-1072 9T00-A 441-60 RH VG-026	Ethylb (100 % wt. 1.00% 0.30%	Fede -41-4) Ibs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ral Hazare Tol (108 % wt. 		Oliutants X (13 % wt. 0.00% 1.80%	ylene 30-20-7) bs/yr 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Acet (67-6 % wt. 32.00% 26.00% 100.00% 15.00%	one 4-1) 1bs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	n-Butyl (71- % wt.	Alcohol 36-3) Ibs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Methy Ket (78-5 % wt.	I Ethyl one 33-3) Ibs/yr 0	iso-Propy (67-6 % wt. 0.00% 1.20% 25.00%	I Alcohol 33-0) Ibs/yr 0 87 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Propylei Methy (107 % wt. 25.00%	ne Glycol / Ether -98-2) Ibs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Propyler Methy Ace (108 % wt. 10.00%	me Glycol 1 Ether 55-6) 1 Ibs/yr 269 0 0 0 0 206 0 0 0 206 0 0 0 0 0 0 0 0 0 0 0 0 0	1,2 Trimethy (95-1 % wt.	,4- benzene 33-6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Hexame diisocy (2818: % wt. 75.00%	ethylene yanate 2-81-2) lbs/yr 2,017 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
HAP/TAC Emis Manufacturen Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta Axalta	Product Type Activator for Imron 2.8 PR Imron 3.5HG Plus Peterson Pacific Blue Imron Accelerator Retarder Imron Accelerator Metalok Pre-Treatment Metalok Activator Imron 3.5 HG + High Gloss Polyurethane - White Imron 3.5 HG + High Gloss Polyurethane - Black Polyurethane Primer - ANSI 61 Gray Imron Activator Reducer GL Imron 3.5 HG + Polyurethane High Gloss Mix Activator for Corlar R 2.8 HG	Product Code FG-062 33-952926 VG-805 Y32401 189S 235S 236S 33-24861 33-24926 62-1072 9T00-A 441-60 RH VG-026	Ethylb. (100 % wt. 1.00% 0.30%	Fede enzene -41-4) lbs/yr 0	Tol (108 % wt. 0.80%	Lene 	Ollutants X (13 % wt. 0.00% 1.80% 1.80% 1.80% 1.70% 1.80% 1.70% 1.70%	ylene 30-20-7) 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Acet (67-6 % wt. 32.00% 26.00% 100.00% 15.00% TPY =	one 4-1) 0 0 0 0 0 2,195 0 0 0 3,998 0 3,424 0 3,424 0 30 4.82	n-Butyl (71- % wt. 	Alcohol 36-3) Ibs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Methy Keta (78-5 % wt.	I Ethyl one 33-3) Ibs/yr 0	iso-Propy (67-6 % wt. 0.00% 1.20% 25.00%	I Alcohol 33-0) Ibs/yr 0 87 0 0 0 0 622 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Propylei Methy (107 % wt. 25.00%	ne Glycol / Ether -98-2) Ibs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Propyler Methy Ace (108 % wt. 10.00% 3.00% 15.00%	ne Glycol 1 Ether estate -65-6) 1 bs/yr 269 0 0 0 0 206 0 0 0 0 0 0 0 0 0 0 0 0 0	1,2 Trimethy (95-4 % wt.	,4- benzene 3-6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Hexame diisocy (2818: % wt. 75.00% 90.00%	ethylene yanate 2-81-2) Ibs/yr 2,017 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
HAP/TAC Emis Manufacturen Axalta	Product Type Activator for Imron 2.8 PR Imron 3.5HG Plus Peterson Pacific Blue Imron Accelerator Retarder Imron Accelerator Metalok Pre-Treatment Metalok Activator Imron 3.5 HG + High Gloss Polyurethane - White Imron 3.5 HG + High Gloss Polyurethane - Black Polyurethane Primer - ANSI 61 Gray Imron Activator Reducer GL Imron 3.5 HG + Polyurethane High Gloss Mix Activator for Corlar R 2.8 HG	Product Code FG-062 33-952926 VG-805 Y32401 189S 235S 236S 33-24861 33-24926 62-1072 9T00-A 441-60 RH VG-026	Ethylb. (100 % wt. 1.00% 0.30%	Fede enzene -41-4) Ibs/yr 0	Tol (108) % wt. 0.80% 7PY =	Lene -88-3) Ibs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0	Ollutants X (13 % wt. 0.00% 1.80% 1.80% 7 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10	ylene 30-20-7) 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Acet (67-6 % wt. 32.00% 26.00% 100.00% 15.00% TPY =	one 4-1) 0 0 0 0 2,195 0 0 0 0 2,195 0 0 0 0 3,998 0 3,998 0 3,424 0 3 0 3 0 4.82	n-Butyl (71- % wt. 8.00% 7PY =	Alcohol 36-3) Ibs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Methy Keti (78-5 % wt.	I Ethyl one 33-3) Ibs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	iso-Propy (67-6 % wt. 0.00% 1.20% 25.00%	I Alcohol 33-0) Ibs/yr 0 87 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Propylei Methy (107 % wt. 25.00%	ne Glycol / Ether -98-2) 1bs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Propyler Methy Ace (108 % wt. 10.00% 3.00% 15.00%	ne Glycol 1 Ether 65-6) 1 bs/yr 269 0 0 0 0 0 206 0 0 0 0 0 0 0 0 0 0 0 0 0	1,2 Trimethy 95-4 % wt.	,4- benzene 3-6) 1bs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Hexame diisocy (2818: % wt. 75.00% 90.00%	ethylene yanate 2-81-2) 1bs/yr 2,017 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
HAP/TAC Emis Manufacturen Axalta	Product Type Activator for Imron 2.8 PR Imron 3.5HG Plus Peterson Pacific Blue Imron Accelerator Retarder Imron Accelerator Metalok Pre-Treatment Metalok Activator Imron 3.5 HG + High Gloss Polyurethane - White Imron 3.5 HG + High Gloss Polyurethane - Black Polyurethane Primer - ANSI 61 Gray Imron Activator Reducer GL Imron 3.5 HG + Polyurethane High Gloss Mix Activator for Corlar R 2.8 HG	Product Code FG-062 33-952926 VG-805 Y32401 189S 235S 236S 33-24861 33-24926 62-1072 9T00-A 441-60 RH VG-026	Ethylb (100 % wt. 1.00% 0.30%	Fede enzene -41-4) lbs/yr 0 0 0 0 0 21 0 0 0	Tol (108 % wt. 0.80% 7PY = 1	Lene -88-3) Ibs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0	Ollutants X (13 % wt. 0.00% 1.80% 1.80% 7 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10	ylene 30-20-7) 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Acet (67-6 % wt. 32.00% 26.00% 100.00% 15.00% <i>TPY</i> =	one 4-1) Ibs/yr 0 0 0 0 0 0 2,195 0 0 0 0 0 3,998 0 3,424 0 30 4.82	n-Butyl (71- % wt. 8.00% TPY =	Alcohol 36-3) Ibs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Methy Keti (78-5 % wt. 	I Ethyl one 33-3) Ibs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	iso-Propy (67-6 % wt. 0.00% 1.20% 25.00%	1 Alcohol 33-0) 1bs/yr 0 87 0 0 0 0 0 0 0 0 0 0 0 0 0	Propylei Methy (107 % wt. 25.00%	ne Glycol / Ether -98-2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Propyler Methy Ace (108 % wt. 10.00% 3.00% 15.00%	ne Glycol 1 Ether etate -65-6) 0 0 0 0 0 0 0 0 0 0 0 0 0	1,2 Trimethy (95-4 % wt.	,4- benzene 3-6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Hexame diisoc; (2818: % wt. 75.00% 90.00% 90.00%	ethylene yanate 2-81-2) 1bs/yr 2,017 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
HAP/TAC Emis	Product Type Activator for Imron 2.8 PR Imron 3.5HG Plus Peterson Pacific Blue Imron Accelerator Retarder Imron Accelerator Metalok Pre-Treatment Metalok Activator Imron 3.5 HG + High Gloss Polyurethane - White Imron 3.5 HG + High Gloss Polyurethane - Black Polyurethane Primer - ANSI 61 Gray Imron 3.5 HG + Polyurethane High Gloss Mix Activator for Corlar R 2.8 HG	Product Code FG-062 33-952926 VG-805 Y32401 189S 235S 236S 33-24861 33-24926 62-1072 9T00-A 441-60 RH VG-026	Ethylb (100 % wt. 1.00% 0.30%	Fede enzene -41-4) lbs/yr 0	Tol (108 % wt. 0.80% 7PY = 10.80% TOPY = 10.80%	Uene -88-3) 1bs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0	Ollutants X (13 % wt. 0.00% 1.80% 1.80% Provide Provide	ylene 30-20-7) 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Acet (67-6 % wt. 32.00% 26.00% 100.00% 100.00% 7PY =	one 4-1) 1bs/yr 0 0 0 0 0 2,195 0 0 0 0 3,998 0 3,424 0 30 4.82	n-Butyl (71- % wt.	Alcohol 36-3) Ibs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Methy Ket (78-5 % wt.	I Ethyl one 33-3) Ibs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	iso-Propy (67-6 % wt. 0.00% 1.20% 25.00%	1 Alcohol 33-0) 1bs/yr 0 87 0 0 0 0 0 0 0 0 0 0 0 0 0	Propylei Methy (107 % wt. 25.00%	ne Glycol / Ether -98-2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Propyler Methy Ace (108- % wt. 10.00% 3.00% 15.00%	ne Glycol 1 Ether etate -65-6) 1 bs/yr 269 0 0 0 0 206 0 0 206 0 0 0 2,307 0 0 0 0 1.39	1,2 Trimethy (95-4 % wt.	,4- benzene i3-6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Hexame diisoc; (2818: % wt. 75.00% 90.00%	ethylene yanate 2-81-2) 1bs/yr 2,017 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
HAP/TAC Emis	Product Type Activator for Imron 2.8 PR Imron 3.5HG Plus Peterson Pacific Blue Imron Accelerator Retarder Imron Accelerator Metalok Pre-Treatment Metalok Activator Imron 3.5 HG + High Gloss Polyurethane - White Imron Activator Polyurethane Primer - ANSI 61 Gray Imron 3.5 HG + Polyurethane High Gloss Mix Activator for Corlar R 2.8 HG	Product Code FG-062 33-952926 VG-805 Y32401 189S 235S 236S 33-24861 33-24926 62-1072 9T00-A 441-60 RH VG-026	Ethylb (100 % wt. 1.00% 0.30%	Fede enzene -41-4) Ibs/yr 0 0 0 0 21 0 0 0 0 0 0 0 0 0 0 0 0 0	Tol (108 % wt. 0.80% 0.80% TPY = lividual Fe Total Fe	Luene -88-3) Ibs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0	ollutants X (13 % wt. 0.00% 1.80% 7	ylene 30-20-7) 1bs/yr 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0	Acet (67-6 % wt. 32.00% 26.00% 100.00% 15.00% 7PY =	one 4-1) Ibs/yr 0 0 0 0 0 0 2,195 0 0 0 0 3,998 0 3,424 0 30 4.82	n-Butyl (71- % wt. 8.00% 7PY =	Alcohol 36-3) Ibs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Methy Ket (78-5 % wt.	I Ethyl one 33-3) Ibs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	iso-Propy (67-6 % wt. 0.00% 1.20% 225.00%	1 Alcohol 33-0) 1bs/yr 0 87 0 0 0 0 0 0 0 0 0 0 0 0 0	Propylei Methy (107 % wt. 25.00%	ne Glycol / Ether -98-2) 1 bs/yr 0 0 0 0 0 0 0 0 0 0 0 0 0	Propyler Methy Ace (108- % wt. 10.00% 3.00% 15.00%	ne Glycol 1 Ether etate -65-6) 1 bs/yr 269 0 0 0 206 0 0 206 0 0 206 0 0 0 0 0 0 0 0 1.39	1,2 Trimethy (95-1 % wt.	,4- benzene i3-6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Hexame diisoc; (2818: % wt. 75.00% 90.00%	ethylene yanate 2-81-2) 1bs/yr 2,017 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Review Report Permit Number: 206442 Page 13 of 14

Peterson Pacific - 206	6442															
Emission Detail Sheet	s															
Burn Table Emissions																
1.5	= Safety Factor	•														
PM/PM ₁₀ /PM _{2.5} Emiss	sions															
Unit Identification	Cutting Technique	Metal Type	Metal Thickness (Inches)	Kerf (Inches)	Metal Cutting Speed (IPM)	Control Device Type	% Control Efficiency	Specific Gravity	Density Conversion (Ib/in ³)	Fume Generated (% of Particulate Generated)	PM/PM _{2.5} /PM ₁₀ Emission Factor (Ib/inch)	Metal Feed Rate (IPH)	2021 Hours of Operation	Uncontrolled Emissions (Ib/hr)	Potential Emissions (Ib/hr)	Potential Emissions (TPY)
Kinetic K5000	Dry	Mild Steel	1	0.12	80	Cartridge	85	7.83	0.28	5	1.70E-03	4800	1869.95	8.15	1.22E+00	1.71E+00
Kinetic K5000	Dry	Mild Steel	1	0.12	80	Cartridge	85	7.83	0.28	5	1.70E-03	4800	1869.95	8.15	1.22E+00	1.71E+00
Messer	Dry	Mild Steel	1.25	0.12	65	Baghouse	99.7	7.83	0.28	5	2.12E-03	3900	2738.96	8.27	2.48E-02	5.10E-02
Whitney	Dry	Mild Steel	0.25	0.12	80	Baghouse	99.7	7.83	0.28	5	4.24E-04	6900	1781.85	2.93	8.78E-03	1.17E-02
			Average	Average	Average									Total PM	Emissions (TPY) =	3.49
NOx Emissions																
Unit Identification	Cutting Technique	Metal Type	NOx Emission Factor (g/min)	2021 Hours of Operation	Potential Emissions (lb/hr)	Potential Emissions (TPY)										
Kinetic K5000	Dry	Mild Steel	6.83	1869.95	0.90	1.27										
Kinetic K5000	Dry	Mild Steel	6.83	1869.95	0.90	1.27										
Messer	Dry	Mild Steel	6.83	2738.96	0.90	1.86										
Whitney	Dry	Mild Steel	6.83	1781.85	0.90	1.21										
				Total NOx	Emissions (TPY) =	5.60										
HAP/TAC Emissions																
Pollutant	CAS No.	Fume Percent	Uncontrolled Emissions (lb/hr)	Potential Emissions (Ib/hr)	Potential Emissions (TPY)											
Copper	7440-50-8	1.4%	3.85E-01	3.47E-02	4.89E-02]										
Manganese	7439-96-5	10%	2.75E+00	2.48E-01	3.49E-01]										
Fume Generation Rate	e/Specific Gravit	y Table														
Metal	Dry	Semidry	Wet	Specific Gravity												
Mild Steel, 8mm	5	0.5	0.05	7.83												
Stainless Steel, 8mm	7	0.7	0.07	7.7												
Stainless Steel, 35mm	1	0.1	0.01	7.7												
NOx Emission Rate Ta	ble															
Metal	Dry (I/min)	Semidry (I/min)	Wet (l/min)	4												
Mild Steel, 8mm	4.95	2.75	1.05	ł												
Stainless Steel, 8mm	4.75	2.45	1.15													
Stainless Steel, 35mm	n 7.4	3.9	1.95]												
Notes:				-	6 m 1 1 1			100.0								
Emissions are based o	on "Emission of F	ume, Nitrogen O	kides and Noise ii	n Plasma Cutting	of Stainless and	Mild Steel" by Bro	omsen B. et al. (1994)	1 2021							
The calculations assur	ne the use of air	as the plasma ga	s. Oxygen as plasi	ma gas lowers fu	me emissions by	25%. Nitrogen as	plasma gas low	ers NOx emissions	s by 20%.							
NOx emissions assum	$e NO_2$ is 7.5% of	the total emissio	ns of NOx (NO an	id NO ₂). Assumes	NO has a density	y of 1.34 g/L and N	NO ₂ has a densit	y of 1.88 g/L.								
Mild steel fume is 67-	73% iron, 2-10%	manganese, and	ND-1.4% copper.			<u> </u>										
Stainless steel fume is	s 38-44% iron, 12	-20% chromium,	4-8% nickel, 4-109	% manganese, 2-	5% copper and up	o to 1% molybder	ium.									
Potential emissions a	re based on scali	ng 2021 actual us	age by a safety fa	ctor.												
Whitney free standing	g cartridge type o	lust collector. Fill	ter efficiency assu	umed to be 99.7%	6 tor particles larg	ger thane or equa	I to 0.02 micron	s.								
wesser free standing	cartridge type du	ist collector. Filte	er erriciency assur	mea to be 99.7%	for particles large	er thane or equal	to 0.02 microns.									
KINETIC K5000 Units ho	ours of operation	pased on the tot	ai 2021 nours of o	peration of the e	existing Kinetic u	nit.										

Peterson Pacific - 2	06442												
Emission Detail She	ets												
Welding Emissions													
			Amount	Units									
2021 Actual FCAV	V Welding Wir	e/Rod Usage =	20.6	1000 lbs									
2021 Actual GMAV	V Welding Wir	e/Rod Usage =	51.542	1000 lbs									
2021 Actual SAV	V Welding Wir	e/Rod Usage =	3.1	1000 lbs									
	Sci	ale Up Factor =	1.25										
Criteria Pollutants					2021 Welding	Wire/Rod Usa	age By Type						
		Potential	Potential						Emissi	on Factors (It	o/10 ³ lb)		
		Emissions	Emissions		Process	Туре	Fume	Chromium	Cromium (VI)	Cobalt	Manganese	Nickel	Lead
Pollutant	Cas No.	(lb/hr)	(TPY)		FCAW	E71T	12.2	0.02	ND	0.01	6.62	0.04	ND
Total Particulate		3.7E-05	0.32		GMAW	E70S	5.2	0.01	ND	0.01	3.18	0.01	ND
PM ₁₀		3.7E-05	0.32		SAW	EM12K	0.05	ND	ND	ND	ND	ND	ND
PM _{2.5}		3.7E-05	0.32										
HAP/TAC Emissions													
		Potential	Potential										
		Emissions	Emissions										
Pollutant	Cas No.	(lb/hr)	(TPY)										
Chromium (Total)	7440-47-3	6.6E-08	5.8E-04										
Chromium (VI)	18540-29-9	0.0E+00	0.0E+00										
Cobalt	7440-48-4	5.1E-08	4.5E-04										
Manganese	7439-96-5	2.1E-05	1.9E-01										
Nickel	7440-02-0	9.6E-08	8.4E-04										
Lead	7439-92-1	0.0E+00	0.0E+00										
Notes:													
Assumes highest en	nitting welding	wire/rod for ca	alendar year 2	021 based on v	welding type.								
ND (No Detect) is re	presented as z	ero.											
<' than the detection	n limit values r	epresented as t	the detection	limit.									
Lead is assumed to l	pe from lead co	ompounds.											
The NOx and CO em	issions from w	elding are assu	med to be neg	gligible.									
Hourly emissions ar	e based on ann	ual usage divid	ed by 8760.										
SAW usage includes	flux.												